跳到主要內容
解 x、y
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

y+2x=7
考慮第二個方程式。 新增 2x 至兩側。
x+y=5,2x+y=7
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
x+y=5
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
x=-y+5
從方程式兩邊減去 y。
2\left(-y+5\right)+y=7
在另一個方程式 2x+y=7 中以 -y+5 代入 x在方程式。
-2y+10+y=7
2 乘上 -y+5。
-y+10=7
將 -2y 加到 y。
-y=-3
從方程式兩邊減去 10。
y=3
將兩邊同時除以 -1。
x=-3+5
在 x=-y+5 中以 3 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=2
將 5 加到 -3。
x=2,y=3
現已成功解出系統。
y+2x=7
考慮第二個方程式。 新增 2x 至兩側。
x+y=5,2x+y=7
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}1&1\\2&1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5+7\\2\times 5-7\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
計算。
x=2,y=3
解出矩陣元素 x 和 y。
y+2x=7
考慮第二個方程式。 新增 2x 至兩側。
x+y=5,2x+y=7
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
x-2x+y-y=5-7
透過在等號兩邊減去同類項的方式,從 x+y=5 減去 2x+y=7。
x-2x=5-7
將 y 加到 -y。 y 和 -y 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
-x=5-7
將 x 加到 -2x。
-x=-2
將 5 加到 -7。
x=2
將兩邊同時除以 -1。
2\times 2+y=7
在 2x+y=7 中以 2 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
4+y=7
2 乘上 2。
y=3
從方程式兩邊減去 4。
x=2,y=3
現已成功解出系統。