解 x
x=-1
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
圖表
共享
已復制到剪貼板
3xx=6x\times \frac{2}{3}+7
變數 x 不能等於 0,因為未定義除數為零。 對方程式兩邊同時乘上 6x,這是 2,3,6x 的最小公倍數。
3x^{2}=6x\times \frac{2}{3}+7
將 x 乘上 x 得到 x^{2}。
3x^{2}=4x+7
將 6 乘上 \frac{2}{3} 得到 4。
3x^{2}-4x=7
從兩邊減去 4x。
3x^{2}-4x-7=0
從兩邊減去 7。
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 3 代入 a,將 -4 代入 b,以及將 -7 代入 c。
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-7\right)}}{2\times 3}
對 -4 平方。
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-7\right)}}{2\times 3}
-4 乘上 3。
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2\times 3}
-12 乘上 -7。
x=\frac{-\left(-4\right)±\sqrt{100}}{2\times 3}
將 16 加到 84。
x=\frac{-\left(-4\right)±10}{2\times 3}
取 100 的平方根。
x=\frac{4±10}{2\times 3}
-4 的相反數是 4。
x=\frac{4±10}{6}
2 乘上 3。
x=\frac{14}{6}
現在解出 ± 為正號時的方程式 x=\frac{4±10}{6}。 將 4 加到 10。
x=\frac{7}{3}
透過找出與消去 2,對分式 \frac{14}{6} 約分至最低項。
x=-\frac{6}{6}
現在解出 ± 為負號時的方程式 x=\frac{4±10}{6}。 從 4 減去 10。
x=-1
-6 除以 6。
x=\frac{7}{3} x=-1
現已成功解出方程式。
3xx=6x\times \frac{2}{3}+7
變數 x 不能等於 0,因為未定義除數為零。 對方程式兩邊同時乘上 6x,這是 2,3,6x 的最小公倍數。
3x^{2}=6x\times \frac{2}{3}+7
將 x 乘上 x 得到 x^{2}。
3x^{2}=4x+7
將 6 乘上 \frac{2}{3} 得到 4。
3x^{2}-4x=7
從兩邊減去 4x。
\frac{3x^{2}-4x}{3}=\frac{7}{3}
將兩邊同時除以 3。
x^{2}-\frac{4}{3}x=\frac{7}{3}
除以 3 可以取消乘以 3 造成的效果。
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{7}{3}+\left(-\frac{2}{3}\right)^{2}
將 -\frac{4}{3} (x 項的係數) 除以 2 可得到 -\frac{2}{3}。接著,將 -\frac{2}{3} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{7}{3}+\frac{4}{9}
-\frac{2}{3} 的平方是將分式的分子和分母兩個都平方。
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{25}{9}
將 \frac{7}{3} 與 \frac{4}{9} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
\left(x-\frac{2}{3}\right)^{2}=\frac{25}{9}
因數分解 x^{2}-\frac{4}{3}x+\frac{4}{9}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
取方程式兩邊的平方根。
x-\frac{2}{3}=\frac{5}{3} x-\frac{2}{3}=-\frac{5}{3}
化簡。
x=\frac{7}{3} x=-1
將 \frac{2}{3} 加到方程式的兩邊。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}