跳到主要內容
評估
Tick mark Image
展開
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
因數分解 x^{3}-1。
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x^{3} 乘上 \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}。
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
因為 \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} 和 \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
計算 x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) 的乘法。
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
合併 x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x 中的同類項。
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
展開 \left(x-1\right)\left(x^{2}+x+1\right)。
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
因數分解 x^{3}-1。
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x^{3} 乘上 \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}。
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
因為 \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} 和 \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
計算 x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) 的乘法。
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
合併 x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x 中的同類項。
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
展開 \left(x-1\right)\left(x^{2}+x+1\right)。