跳到主要內容
評估
Tick mark Image
對 x 微分
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{5^{1}x^{7}y^{2}}{5^{1}x^{1}y^{2}}
用指數的法則來簡化方程式。
5^{1-1}x^{7-1}y^{2-2}
計算有相同底數但不同乘冪數間相除的方法: 將分子的指數減去分母的指數。
5^{0}x^{7-1}y^{2-2}
從 1 減去 1。
x^{7-1}y^{2-2}
除了 0 和 a^{0}=1 以外的任意數 a。
x^{6}y^{2-2}
從 7 減去 1。
x^{6}y^{0}
從 2 減去 2。
5^{0}x^{6}
除了 0 和 a^{0}=1 以外的任意數 a。
1x^{6}
除了 0 以外的任意項 t,t^{0}=1。
x^{6}
任一項 t、t\times 1=t 及 1t=t。
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5y^{2}}{5y^{2}}x^{7-1})
計算有相同底數但不同乘冪數間相除的方法: 將分子的指數減去分母的指數。
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6})
計算。
6x^{6-1}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
6x^{5}
計算。