跳到主要內容
評估
Tick mark Image
對 p 微分
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{5q^{2}p^{3}}{5qp^{2}\left(9p^{2}-7q^{2}\right)}
因數分解尚未分解的運算式。
\frac{pq}{9p^{2}-7q^{2}}
在分子和分母中同時消去 5qp^{2}。
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\frac{\mathrm{d}}{\mathrm{d}p}(5q^{2}p^{3})-5q^{2}p^{3}\frac{\mathrm{d}}{\mathrm{d}p}(45qp^{4}+\left(-35q^{3}\right)p^{2})}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 3\times 5q^{2}p^{3-1}-5q^{2}p^{3}\left(4\times 45qp^{4-1}+2\left(-35q^{3}\right)p^{2-1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
化簡。
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
45qp^{4}+\left(-35q^{3}\right)p^{2} 乘上 15q^{2}p^{2}。
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-\left(5q^{2}p^{3}\times 180qp^{3}+5q^{2}p^{3}\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
5q^{2}p^{3} 乘上 180qp^{3}+\left(-70q^{3}\right)p^{1}。
\frac{45q\times 15q^{2}p^{4+2}+\left(-35q^{3}\right)\times 15q^{2}p^{2+2}-\left(5q^{2}\times 180qp^{3+3}+5q^{2}\left(-70q^{3}\right)p^{3+1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{675q^{3}p^{6}+\left(-525q^{5}\right)p^{4}-\left(900q^{3}p^{6}+\left(-350q^{5}\right)p^{4}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
化簡。
\frac{\left(-225q^{3}\right)p^{6}+\left(-175q^{5}\right)p^{4}}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
合併同類項。