評估
\frac{1}{x-5}
展開
\frac{1}{x-5}
圖表
共享
已復制到剪貼板
\frac{5}{x+6}-\frac{4x-31}{\left(x-5\right)\left(x+6\right)}
因數分解 x^{2}+x-30。
\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+6\right)}-\frac{4x-31}{\left(x-5\right)\left(x+6\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+6 和 \left(x-5\right)\left(x+6\right) 的最小公倍式為 \left(x-5\right)\left(x+6\right)。 \frac{5}{x+6} 乘上 \frac{x-5}{x-5}。
\frac{5\left(x-5\right)-\left(4x-31\right)}{\left(x-5\right)\left(x+6\right)}
因為 \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+6\right)} 和 \frac{4x-31}{\left(x-5\right)\left(x+6\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{5x-25-4x+31}{\left(x-5\right)\left(x+6\right)}
計算 5\left(x-5\right)-\left(4x-31\right) 的乘法。
\frac{x+6}{\left(x-5\right)\left(x+6\right)}
合併 5x-25-4x+31 中的同類項。
\frac{1}{x-5}
在分子和分母中同時消去 x+6。
\frac{5}{x+6}-\frac{4x-31}{\left(x-5\right)\left(x+6\right)}
因數分解 x^{2}+x-30。
\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+6\right)}-\frac{4x-31}{\left(x-5\right)\left(x+6\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+6 和 \left(x-5\right)\left(x+6\right) 的最小公倍式為 \left(x-5\right)\left(x+6\right)。 \frac{5}{x+6} 乘上 \frac{x-5}{x-5}。
\frac{5\left(x-5\right)-\left(4x-31\right)}{\left(x-5\right)\left(x+6\right)}
因為 \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+6\right)} 和 \frac{4x-31}{\left(x-5\right)\left(x+6\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{5x-25-4x+31}{\left(x-5\right)\left(x+6\right)}
計算 5\left(x-5\right)-\left(4x-31\right) 的乘法。
\frac{x+6}{\left(x-5\right)\left(x+6\right)}
合併 5x-25-4x+31 中的同類項。
\frac{1}{x-5}
在分子和分母中同時消去 x+6。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}