評估
4.5
因式分解
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
共享
已復制到剪貼板
\frac{1}{\frac{3}{2}-1}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
將 3 除以 3 以得到 1。
\frac{1}{\frac{3}{2}-\frac{2}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
將 1 轉換成分數 \frac{2}{2}。
\frac{1}{\frac{3-2}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
因為 \frac{3}{2} 和 \frac{2}{2} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{1}{\frac{1}{2}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
從 3 減去 2 會得到 1。
1\times 2+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
1 除以 \frac{1}{2} 的算法是將 1 乘以 \frac{1}{2} 的倒數。
2+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}
將 1 乘上 2 得到 2。
2+0.4\left(-\frac{5}{2}\right)^{2}
從 1 減去 0.6 會得到 0.4。
2+0.4\times \frac{25}{4}
計算 -\frac{5}{2} 的 2 乘冪,然後得到 \frac{25}{4}。
2+\frac{2}{5}\times \frac{25}{4}
將小數值 0.4 轉換成分數 \frac{4}{10}。 透過找出與消去 2,對分式 \frac{4}{10} 約分至最低項。
2+\frac{2\times 25}{5\times 4}
\frac{2}{5} 乘上 \frac{25}{4} 的算法: 將分子和分子相乘以及將分母和分母相乘。
2+\frac{50}{20}
在分數 \frac{2\times 25}{5\times 4} 上完成乘法。
2+\frac{5}{2}
透過找出與消去 10,對分式 \frac{50}{20} 約分至最低項。
\frac{4}{2}+\frac{5}{2}
將 2 轉換成分數 \frac{4}{2}。
\frac{4+5}{2}
因為 \frac{4}{2} 和 \frac{5}{2} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{9}{2}
將 4 與 5 相加可以得到 9。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}