跳到主要內容
評估
Tick mark Image
對 x 微分
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

\frac{2x^{2}\left(-3\right)-6x^{2}}{-12x}
將 x 乘上 x 得到 x^{2}。
\frac{-6x^{2}-6x^{2}}{-12x}
將 2 乘上 -3 得到 -6。
\frac{-12x^{2}}{-12x}
合併 -6x^{2} 和 -6x^{2} 以取得 -12x^{2}。
x
在分子和分母中同時消去 -12x。
\frac{-12x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\left(-6x\right)x^{1}-6x^{2})-\left(\left(-6x\right)x^{1}-6x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{1})}{\left(-12x^{1}\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{-12x^{1}\left(\left(-6x\right)x^{1-1}+2\left(-6\right)x^{2-1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{1-1}}{\left(-12x^{1}\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{-12x^{1}\left(\left(-6x\right)x^{0}-12x^{1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
化簡。
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
-12x^{1} 乘上 \left(-6x\right)x^{0}-12x^{1}。
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}\left(-12\right)x^{0}-6x^{2}\left(-12\right)x^{0}\right)}{\left(-12x^{1}\right)^{2}}
\left(-6x\right)x^{1}-6x^{2} 乘上 -12x^{0}。
\frac{-12\left(-6x\right)x^{1}-12\left(-12\right)x^{1+1}-\left(\left(-6x\right)\left(-12\right)x^{1}-6\left(-12\right)x^{2}\right)}{\left(-12x^{1}\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{72xx^{1}+144x^{2}-\left(72xx^{1}+72x^{2}\right)}{\left(-12x^{1}\right)^{2}}
化簡。
\frac{72x^{2}}{\left(-12x^{1}\right)^{2}}
合併同類項。
\frac{72x^{2}}{\left(-12x\right)^{2}}
任一項 t,t^{1}=t。