跳到主要內容
評估
Tick mark Image
對 x 微分
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{2x^{2}y^{2}}{4x^{2}+2401\times 3x^{-3}}
計算 7 的 4 乘冪,然後得到 2401。
\frac{2x^{2}y^{2}}{4x^{2}+7203x^{-3}}
將 2401 乘上 3 得到 7203。
\frac{2x^{2}y^{2}}{x^{-3}\left(4x^{5}+7203\right)}
因數分解尚未分解的運算式。
\frac{2y^{2}x^{5}}{4x^{5}+7203}
計算有相同底數但不同乘冪數間相除的方法: 將分子的指數減去分母的指數。
\frac{\left(4x^{2}+7203x^{-3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2y^{2}x^{2})-2y^{2}x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2}+7203x^{-3})}{\left(4x^{2}+7203x^{-3}\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\left(4x^{2}+7203x^{-3}\right)\times 2\times 2y^{2}x^{2-1}-2y^{2}x^{2}\left(2\times 4x^{2-1}-3\times 7203x^{-3-1}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\left(4x^{2}+7203x^{-3}\right)\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
化簡。
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
4x^{2}+7203x^{-3} 乘上 4y^{2}x^{1}。
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-\left(2y^{2}x^{2}\times 8x^{1}+2y^{2}x^{2}\left(-21609\right)x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
2y^{2}x^{2} 乘上 8x^{1}-21609x^{-4}。
\frac{4\times 4y^{2}x^{2+1}+7203\times 4y^{2}x^{-3+1}-\left(2y^{2}\times 8x^{2+1}+2y^{2}\left(-21609\right)x^{2-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{16y^{2}x^{3}+28812y^{2}x^{-2}-\left(16y^{2}x^{3}+\left(-43218y^{2}\right)x^{-2}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
化簡。
\frac{72030y^{2}x^{-2}}{\left(4x^{2}+7203x^{-3}\right)^{2}}
合併同類項。