對 t 微分
\frac{2t^{2}\left(3t^{2}-4t-21\right)}{-9t^{4}+12t^{3}+38t^{2}-28t-49}
評估
\frac{2t^{3}}{7+2t-3t^{2}}
共享
已復制到剪貼板
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t^{3}}{7-3t^{2}+2t})
將 3 與 4 相加可以得到 7。
\frac{\left(-3t^{2}+2t^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{3})-2t^{3}\frac{\mathrm{d}}{\mathrm{d}t}(-3t^{2}+2t^{1}+7)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 3\times 2t^{3-1}-2t^{3}\left(2\left(-3\right)t^{2-1}+2t^{1-1}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
化簡。
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
-3t^{2}+2t^{1}+7 乘上 6t^{2}。
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-\left(2t^{3}\left(-6\right)t^{1}+2t^{3}\times 2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
2t^{3} 乘上 -6t^{1}+2t^{0}。
\frac{-3\times 6t^{2+2}+2\times 6t^{1+2}+7\times 6t^{2}-\left(2\left(-6\right)t^{3+1}+2\times 2t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{-18t^{4}+12t^{3}+42t^{2}-\left(-12t^{4}+4t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
化簡。
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
合併同類項。
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t+7\right)^{2}}
任一項 t,t^{1}=t。
\frac{2t^{3}}{7-3t^{2}+2t}
將 3 與 4 相加可以得到 7。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}