跳到主要內容
對 q 微分
Tick mark Image
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{\left(-3q^{2}+18q^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}q}(2q^{1})-2q^{1}\frac{\mathrm{d}}{\mathrm{d}q}(-3q^{2}+18q^{1}+21)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\left(-3q^{2}+18q^{1}+21\right)\times 2q^{1-1}-2q^{1}\left(2\left(-3\right)q^{2-1}+18q^{1-1}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\left(-3q^{2}+18q^{1}+21\right)\times 2q^{0}-2q^{1}\left(-6q^{1}+18q^{0}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
化簡。
\frac{-3q^{2}\times 2q^{0}+18q^{1}\times 2q^{0}+21\times 2q^{0}-2q^{1}\left(-6q^{1}+18q^{0}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
-3q^{2}+18q^{1}+21 乘上 2q^{0}。
\frac{-3q^{2}\times 2q^{0}+18q^{1}\times 2q^{0}+21\times 2q^{0}-\left(2q^{1}\left(-6\right)q^{1}+2q^{1}\times 18q^{0}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
2q^{1} 乘上 -6q^{1}+18q^{0}。
\frac{-3\times 2q^{2}+18\times 2q^{1}+21\times 2q^{0}-\left(2\left(-6\right)q^{1+1}+2\times 18q^{1}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{-6q^{2}+36q^{1}+42q^{0}-\left(-12q^{2}+36q^{1}\right)}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
化簡。
\frac{6q^{2}+42q^{0}}{\left(-3q^{2}+18q^{1}+21\right)^{2}}
合併同類項。
\frac{6q^{2}+42q^{0}}{\left(-3q^{2}+18q+21\right)^{2}}
任一項 t,t^{1}=t。
\frac{6q^{2}+42\times 1}{\left(-3q^{2}+18q+21\right)^{2}}
除了 0 以外的任意項 t,t^{0}=1。
\frac{6q^{2}+42}{\left(-3q^{2}+18q+21\right)^{2}}
任一項 t、t\times 1=t 及 1t=t。