評估
\frac{1}{x\left(x-2y\right)}
展開
\frac{1}{x\left(x-2y\right)}
共享
已復制到剪貼板
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+2y 和 x-2y 的最小公倍式為 \left(x-2y\right)\left(x+2y\right)。 \frac{x-2y}{x+2y} 乘上 \frac{x-2y}{x-2y}。 \frac{x+2y}{x-2y} 乘上 \frac{x+2y}{x+2y}。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
計算 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 的乘法。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合併 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的同類項。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 1 乘上 \frac{4xy}{4xy}。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘上 \frac{4xy+x^{2}+4y^{2}}{4xy} 的算法: 將分子和分子相乘以及將分母和分母相乘。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
運算式 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 為最簡分數。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的算法是將 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒數。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
在分子和分母中同時消去 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
因數分解尚未分解的運算式。
\frac{1}{x\left(x-2y\right)}
在分子和分母中同時消去 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展開運算式。
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+2y 和 x-2y 的最小公倍式為 \left(x-2y\right)\left(x+2y\right)。 \frac{x-2y}{x+2y} 乘上 \frac{x-2y}{x-2y}。 \frac{x+2y}{x-2y} 乘上 \frac{x+2y}{x+2y}。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
計算 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 的乘法。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合併 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的同類項。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 1 乘上 \frac{4xy}{4xy}。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘上 \frac{4xy+x^{2}+4y^{2}}{4xy} 的算法: 將分子和分子相乘以及將分母和分母相乘。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
運算式 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 為最簡分數。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的算法是將 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒數。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
在分子和分母中同時消去 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
因數分解尚未分解的運算式。
\frac{1}{x\left(x-2y\right)}
在分子和分母中同時消去 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展開運算式。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}