跳到主要內容
評估
Tick mark Image
展開
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+2y 和 x-2y 的最小公倍式為 \left(x-2y\right)\left(x+2y\right)。 \frac{x-2y}{x+2y} 乘上 \frac{x-2y}{x-2y}。 \frac{x+2y}{x-2y} 乘上 \frac{x+2y}{x+2y}。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
計算 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 的乘法。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合併 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的同類項。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 1 乘上 \frac{4xy}{4xy}。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘上 \frac{4xy+x^{2}+4y^{2}}{4xy} 的算法: 將分子和分子相乘以及將分母和分母相乘。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
運算式 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 為最簡分數。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的算法是將 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒數。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
在分子和分母中同時消去 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
因數分解尚未分解的運算式。
\frac{1}{x\left(x-2y\right)}
在分子和分母中同時消去 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展開運算式。
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 x+2y 和 x-2y 的最小公倍式為 \left(x-2y\right)\left(x+2y\right)。 \frac{x-2y}{x+2y} 乘上 \frac{x-2y}{x-2y}。 \frac{x+2y}{x-2y} 乘上 \frac{x+2y}{x+2y}。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
計算 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 的乘法。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合併 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的同類項。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要對運算式相加或相減,請先通分使其分母相同。 1 乘上 \frac{4xy}{4xy}。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
因為 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 的分母相同,所以將分子相加即可相加這兩個值。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘上 \frac{4xy+x^{2}+4y^{2}}{4xy} 的算法: 將分子和分子相乘以及將分母和分母相乘。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
運算式 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 為最簡分數。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的算法是將 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒數。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
在分子和分母中同時消去 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
因數分解尚未分解的運算式。
\frac{1}{x\left(x-2y\right)}
在分子和分母中同時消去 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展開運算式。