因式分解
\frac{\sqrt{2}\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{2}
評估
-\frac{2\sqrt{3}ba^{2}c^{5}}{2}+\frac{2\sqrt{5}ab^{2}c^{4}}{2}+\sqrt{2}
共享
已復制到剪貼板
factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
計算 4 的平方根,並得到 2。
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{\sqrt{2}abc})
因數分解 \frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc} 中尚未分解的運算式。
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}})
在分子和分母中同時消去 abc。
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
將分子和分母同時乘以 \sqrt{2},來有理化 \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}} 的分母。
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{2})
\sqrt{2} 的平方是 2。
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
計算 -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2 乘上 \sqrt{2} 時使用乘法分配律。
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
因數分解 6=2\times 3。 將產品 \sqrt{2\times 3} 的平方根重寫為平方根 \sqrt{2}\sqrt{3} 的乘積。
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
將 \sqrt{2} 乘上 \sqrt{2} 得到 2。
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
因數分解 10=2\times 5。 將產品 \sqrt{2\times 5} 的平方根重寫為平方根 \sqrt{2}\sqrt{5} 的乘積。
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{4}\sqrt{5}+2\sqrt{2}}{2})
將 \sqrt{2} 乘上 \sqrt{2} 得到 2。
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}\right)
請考慮 -2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{4}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}}。 因式分解 2。
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}
重寫完整因數分解過的運算式。 化簡。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}