跳到主要內容
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
將分子和分母同時乘以 \sqrt{7}-5,來有理化 \frac{\sqrt{3}-5}{\sqrt{7}+5} 的分母。
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
請考慮 \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)。 乘法可以使用下列規則轉換成平方差: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}。
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
對 \sqrt{7} 平方。 對 5 平方。
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
從 7 減去 25 會得到 -18。
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
透過將 \sqrt{3}-5 的每個項乘以 \sqrt{7}-5 的每個項以套用乘法分配律。
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
若要將 \sqrt{3} 和 \sqrt{7} 相乘,請將數位乘在平方根之下。
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
分子和分母同時乘以 -1。