跳到主要內容
評估
Tick mark Image
因式分解
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
若要對運算式相加或相減,請先通分使其分母相同。 x+y 和 x-y 的最小公倍式為 \left(x+y\right)\left(x-y\right)。 \frac{x-y}{x+y} 乘上 \frac{x-y}{x-y}。 \frac{x+y}{x-y} 乘上 \frac{x+y}{x+y}。
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
因為 \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} 和 \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
計算 \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right) 的乘法。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
合併 x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2} 中的同類項。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
因數分解 x^{2}-y^{2}。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
若要對運算式相加或相減,請先通分使其分母相同。 1 乘上 \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
因為 \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} 和 \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
計算 \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right) 的乘法。
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
合併 x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2} 中的同類項。
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
\frac{-4xy}{\left(x+y\right)\left(x-y\right)} 除以 \frac{xy}{\left(x+y\right)\left(x-y\right)} 的算法是將 \frac{-4xy}{\left(x+y\right)\left(x-y\right)} 乘以 \frac{xy}{\left(x+y\right)\left(x-y\right)} 的倒數。
-4
在分子和分母中同時消去 xy\left(x+y\right)\left(x-y\right)。