Chuyển đến nội dung chính
Microsoft
|
Math Solver
Giải
Thực hành
Chơi
Các chủ đề
Tiền đại số
Trung bình
Số yếu vị
ước số chung lớn nhất
Bội số chung nhỏ nhất
Thứ tự các hoạt động
Phân số
Hỗn số
Nguyên tố
Số mũ
Căn thức
Đại số học
Kết hợp các số hạng đồng dạng
Giải cho một biến
Thừa số
Mở rộng
So sánh phân số
Các phương trình tuyến tính
Phương trình bậc hai
Các bất đẳng thức
Hệ phương trình
Ma trận
Lượng giác
Đơn giản hóa
ước lượng
đồ thị
Giải phương trình
Giải tích
đạo hàm
Tích phân
Giới hạn
Đầu vào đại số
Đầu vào lượng giác
Đầu vào tính toán
Đầu vào ma trận
Giải
Thực hành
Chơi
Các chủ đề
Tiền đại số
Trung bình
Số yếu vị
ước số chung lớn nhất
Bội số chung nhỏ nhất
Thứ tự các hoạt động
Phân số
Hỗn số
Nguyên tố
Số mũ
Căn thức
Đại số học
Kết hợp các số hạng đồng dạng
Giải cho một biến
Thừa số
Mở rộng
So sánh phân số
Các phương trình tuyến tính
Phương trình bậc hai
Các bất đẳng thức
Hệ phương trình
Ma trận
Lượng giác
Đơn giản hóa
ước lượng
đồ thị
Giải phương trình
Giải tích
đạo hàm
Tích phân
Giới hạn
Đầu vào đại số
Đầu vào lượng giác
Đầu vào tính toán
Đầu vào ma trận
Basic
đại số
lượng giác
Phép tính
Số liệu thống kê
Ma trận
Ký tự
Tính giá trị
0
Bài kiểm tra
Limits
\lim_{ x \rightarrow 0 } 5x
Các bài toán tương tự từ Tìm kiếm web
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Thêm Mục
Chia sẻ
Sao chép
Đã sao chép vào bảng tạm
Những vấn đề tương tự
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Trở về đầu