Tìm z
z=-1+i
Gán z
z≔-1+i
Chia sẻ
Đã sao chép vào bảng tạm
z=\frac{1+7i}{3-4i}
Tính 2-i mũ 2 và ta có 3-4i.
z=\frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}
Nhân cả tử số và mẫu số của \frac{1+7i}{3-4i} với số phức liên hợp của mẫu số, 3+4i.
z=\frac{-25+25i}{25}
Thực hiện nhân trong \frac{\left(1+7i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
z=-1+i
Chia -25+25i cho 25 ta có -1+i.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}