Tìm x (complex solution)
x=-1
x=9
x=4-3i
x=4+3i
Tìm x
x=9
x=-1
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x\left(x-8\right)\left(x^{2}-8x+16\right)=225
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-4\right)^{2}.
\left(x^{2}-8x\right)\left(x^{2}-8x+16\right)=225
Sử dụng tính chất phân phối để nhân x với x-8.
x^{4}-16x^{3}+80x^{2}-128x=225
Sử dụng tính chất phân phối để nhân x^{2}-8x với x^{2}-8x+16 và kết hợp các số hạng tương đương.
x^{4}-16x^{3}+80x^{2}-128x-225=0
Trừ 225 khỏi cả hai vế.
±225,±75,±45,±25,±15,±9,±5,±3,±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -225 chia hết cho p và hệ số của số hạng cao nhất 1 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=-1
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
x^{3}-17x^{2}+97x-225=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia x^{4}-16x^{3}+80x^{2}-128x-225 cho x+1 ta có x^{3}-17x^{2}+97x-225. Giải phương trình khi kết quả bằng 0.
±225,±75,±45,±25,±15,±9,±5,±3,±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -225 chia hết cho p và hệ số của số hạng cao nhất 1 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=9
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
x^{2}-8x+25=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia x^{3}-17x^{2}+97x-225 cho x-9 ta có x^{2}-8x+25. Giải phương trình khi kết quả bằng 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 25}}{2}
Có thể giải mọi phương trình của biểu mẫu ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Thay 1 cho a, -8 cho b và 25 cho c trong công thức bậc hai.
x=\frac{8±\sqrt{-36}}{2}
Thực hiện phép tính.
x=4-3i x=4+3i
Giải phương trình x^{2}-8x+25=0 khi ± là cộng và khi ± là trừ.
x=-1 x=9 x=4-3i x=4+3i
Liệt kê tất cả đáp án tìm được.
x\left(x-8\right)\left(x^{2}-8x+16\right)=225
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-4\right)^{2}.
\left(x^{2}-8x\right)\left(x^{2}-8x+16\right)=225
Sử dụng tính chất phân phối để nhân x với x-8.
x^{4}-16x^{3}+80x^{2}-128x=225
Sử dụng tính chất phân phối để nhân x^{2}-8x với x^{2}-8x+16 và kết hợp các số hạng tương đương.
x^{4}-16x^{3}+80x^{2}-128x-225=0
Trừ 225 khỏi cả hai vế.
±225,±75,±45,±25,±15,±9,±5,±3,±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -225 chia hết cho p và hệ số của số hạng cao nhất 1 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=-1
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
x^{3}-17x^{2}+97x-225=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia x^{4}-16x^{3}+80x^{2}-128x-225 cho x+1 ta có x^{3}-17x^{2}+97x-225. Giải phương trình khi kết quả bằng 0.
±225,±75,±45,±25,±15,±9,±5,±3,±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -225 chia hết cho p và hệ số của số hạng cao nhất 1 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=9
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
x^{2}-8x+25=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia x^{3}-17x^{2}+97x-225 cho x-9 ta có x^{2}-8x+25. Giải phương trình khi kết quả bằng 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 25}}{2}
Có thể giải mọi phương trình của biểu mẫu ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Thay 1 cho a, -8 cho b và 25 cho c trong công thức bậc hai.
x=\frac{8±\sqrt{-36}}{2}
Thực hiện phép tính.
x\in \emptyset
Do không thể xác định căn bậc hai của số âm trong trường số thực nên không có nghiệm nào.
x=-1 x=9
Liệt kê tất cả đáp án tìm được.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}