Phân tích thành thừa số
\left(x-12\right)\left(x-11\right)
Tính giá trị
\left(x-12\right)\left(x-11\right)
Đồ thị
Bài kiểm tra
Polynomial
x ^ { 2 } - 23 x + 132
Chia sẻ
Đã sao chép vào bảng tạm
a+b=-23 ab=1\times 132=132
Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là x^{2}+ax+bx+132. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-132 -2,-66 -3,-44 -4,-33 -6,-22 -11,-12
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 132.
-1-132=-133 -2-66=-68 -3-44=-47 -4-33=-37 -6-22=-28 -11-12=-23
Tính tổng của mỗi cặp.
a=-12 b=-11
Nghiệm là cặp có tổng bằng -23.
\left(x^{2}-12x\right)+\left(-11x+132\right)
Viết lại x^{2}-23x+132 dưới dạng \left(x^{2}-12x\right)+\left(-11x+132\right).
x\left(x-12\right)-11\left(x-12\right)
Phân tích x trong đầu tiên và -11 trong nhóm thứ hai.
\left(x-12\right)\left(x-11\right)
Phân tích số hạng chung x-12 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x^{2}-23x+132=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 132}}{2}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-23\right)±\sqrt{529-4\times 132}}{2}
Bình phương -23.
x=\frac{-\left(-23\right)±\sqrt{529-528}}{2}
Nhân -4 với 132.
x=\frac{-\left(-23\right)±\sqrt{1}}{2}
Cộng 529 vào -528.
x=\frac{-\left(-23\right)±1}{2}
Lấy căn bậc hai của 1.
x=\frac{23±1}{2}
Số đối của số -23 là 23.
x=\frac{24}{2}
Bây giờ, giải phương trình x=\frac{23±1}{2} khi ± là số dương. Cộng 23 vào 1.
x=12
Chia 24 cho 2.
x=\frac{22}{2}
Bây giờ, giải phương trình x=\frac{23±1}{2} khi ± là số âm. Trừ 1 khỏi 23.
x=11
Chia 22 cho 2.
x^{2}-23x+132=\left(x-12\right)\left(x-11\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế 12 vào x_{1} và 11 vào x_{2}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}