Chuyển đến nội dung chính
Phân tích thành thừa số
Tick mark Image
Tính giá trị
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=-19 ab=1\times 90=90
Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là x^{2}+ax+bx+90. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Tính tổng của mỗi cặp.
a=-10 b=-9
Nghiệm là cặp có tổng bằng -19.
\left(x^{2}-10x\right)+\left(-9x+90\right)
Viết lại x^{2}-19x+90 dưới dạng \left(x^{2}-10x\right)+\left(-9x+90\right).
x\left(x-10\right)-9\left(x-10\right)
Phân tích x trong đầu tiên và -9 trong nhóm thứ hai.
\left(x-10\right)\left(x-9\right)
Phân tích số hạng chung x-10 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x^{2}-19x+90=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 90}}{2}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 90}}{2}
Bình phương -19.
x=\frac{-\left(-19\right)±\sqrt{361-360}}{2}
Nhân -4 với 90.
x=\frac{-\left(-19\right)±\sqrt{1}}{2}
Cộng 361 vào -360.
x=\frac{-\left(-19\right)±1}{2}
Lấy căn bậc hai của 1.
x=\frac{19±1}{2}
Số đối của số -19 là 19.
x=\frac{20}{2}
Bây giờ, giải phương trình x=\frac{19±1}{2} khi ± là số dương. Cộng 19 vào 1.
x=10
Chia 20 cho 2.
x=\frac{18}{2}
Bây giờ, giải phương trình x=\frac{19±1}{2} khi ± là số âm. Trừ 1 khỏi 19.
x=9
Chia 18 cho 2.
x^{2}-19x+90=\left(x-10\right)\left(x-9\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế 10 vào x_{1} và 9 vào x_{2}.