Tìm x
x=4
x=7
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{2}-11x+28=0
Thêm 28 vào cả hai vế.
a+b=-11 ab=28
Để giải phương trình, phân tích x^{2}-11x+28 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-28 -2,-14 -4,-7
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 28.
-1-28=-29 -2-14=-16 -4-7=-11
Tính tổng của mỗi cặp.
a=-7 b=-4
Nghiệm là cặp có tổng bằng -11.
\left(x-7\right)\left(x-4\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=7 x=4
Để tìm các giải pháp phương trình, hãy giải quyết x-7=0 và x-4=0.
x^{2}-11x+28=0
Thêm 28 vào cả hai vế.
a+b=-11 ab=1\times 28=28
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx+28. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-28 -2,-14 -4,-7
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 28.
-1-28=-29 -2-14=-16 -4-7=-11
Tính tổng của mỗi cặp.
a=-7 b=-4
Nghiệm là cặp có tổng bằng -11.
\left(x^{2}-7x\right)+\left(-4x+28\right)
Viết lại x^{2}-11x+28 dưới dạng \left(x^{2}-7x\right)+\left(-4x+28\right).
x\left(x-7\right)-4\left(x-7\right)
Phân tích x trong đầu tiên và -4 trong nhóm thứ hai.
\left(x-7\right)\left(x-4\right)
Phân tích số hạng chung x-7 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=7 x=4
Để tìm các giải pháp phương trình, hãy giải quyết x-7=0 và x-4=0.
x^{2}-11x=-28
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x^{2}-11x-\left(-28\right)=-28-\left(-28\right)
Cộng 28 vào cả hai vế của phương trình.
x^{2}-11x-\left(-28\right)=0
Trừ -28 cho chính nó ta có 0.
x^{2}-11x+28=0
Trừ -28 khỏi 0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 28}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -11 vào b và 28 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 28}}{2}
Bình phương -11.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2}
Nhân -4 với 28.
x=\frac{-\left(-11\right)±\sqrt{9}}{2}
Cộng 121 vào -112.
x=\frac{-\left(-11\right)±3}{2}
Lấy căn bậc hai của 9.
x=\frac{11±3}{2}
Số đối của số -11 là 11.
x=\frac{14}{2}
Bây giờ, giải phương trình x=\frac{11±3}{2} khi ± là số dương. Cộng 11 vào 3.
x=7
Chia 14 cho 2.
x=\frac{8}{2}
Bây giờ, giải phương trình x=\frac{11±3}{2} khi ± là số âm. Trừ 3 khỏi 11.
x=4
Chia 8 cho 2.
x=7 x=4
Hiện phương trình đã được giải.
x^{2}-11x=-28
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-28+\left(-\frac{11}{2}\right)^{2}
Chia -11, hệ số của số hạng x, cho 2 để có kết quả -\frac{11}{2}. Sau đó, cộng bình phương của -\frac{11}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-11x+\frac{121}{4}=-28+\frac{121}{4}
Bình phương -\frac{11}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}-11x+\frac{121}{4}=\frac{9}{4}
Cộng -28 vào \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{9}{4}
Phân tích x^{2}-11x+\frac{121}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x-\frac{11}{2}=\frac{3}{2} x-\frac{11}{2}=-\frac{3}{2}
Rút gọn.
x=7 x=4
Cộng \frac{11}{2} vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}