Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=6 ab=-7
Để giải phương trình, phân tích x^{2}+6x-7 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x-1\right)\left(x+7\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=1 x=-7
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+7=0.
a+b=6 ab=1\left(-7\right)=-7
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-7. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x^{2}-x\right)+\left(7x-7\right)
Viết lại x^{2}+6x-7 dưới dạng \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
Phân tích x trong đầu tiên và 7 trong nhóm thứ hai.
\left(x-1\right)\left(x+7\right)
Phân tích số hạng chung x-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=1 x=-7
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+7=0.
x^{2}+6x-7=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 6 vào b và -7 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Bình phương 6.
x=\frac{-6±\sqrt{36+28}}{2}
Nhân -4 với -7.
x=\frac{-6±\sqrt{64}}{2}
Cộng 36 vào 28.
x=\frac{-6±8}{2}
Lấy căn bậc hai của 64.
x=\frac{2}{2}
Bây giờ, giải phương trình x=\frac{-6±8}{2} khi ± là số dương. Cộng -6 vào 8.
x=1
Chia 2 cho 2.
x=-\frac{14}{2}
Bây giờ, giải phương trình x=\frac{-6±8}{2} khi ± là số âm. Trừ 8 khỏi -6.
x=-7
Chia -14 cho 2.
x=1 x=-7
Hiện phương trình đã được giải.
x^{2}+6x-7=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}+6x-7-\left(-7\right)=-\left(-7\right)
Cộng 7 vào cả hai vế của phương trình.
x^{2}+6x=-\left(-7\right)
Trừ -7 cho chính nó ta có 0.
x^{2}+6x=7
Trừ -7 khỏi 0.
x^{2}+6x+3^{2}=7+3^{2}
Chia 6, hệ số của số hạng x, cho 2 để có kết quả 3. Sau đó, cộng bình phương của 3 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+6x+9=7+9
Bình phương 3.
x^{2}+6x+9=16
Cộng 7 vào 9.
\left(x+3\right)^{2}=16
Phân tích x^{2}+6x+9 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Lấy căn bậc hai của cả hai vế của phương trình.
x+3=4 x+3=-4
Rút gọn.
x=1 x=-7
Trừ 3 khỏi cả hai vế của phương trình.