Tìm x
x=-5
x=3
Đồ thị
Bài kiểm tra
Quadratic Equation
x ^ { 2 } + 2 x - 15 = 0
Chia sẻ
Đã sao chép vào bảng tạm
a+b=2 ab=-15
Để giải phương trình, phân tích x^{2}+2x-15 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,15 -3,5
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -15.
-1+15=14 -3+5=2
Tính tổng của mỗi cặp.
a=-3 b=5
Nghiệm là cặp có tổng bằng 2.
\left(x-3\right)\left(x+5\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=3 x=-5
Để tìm các giải pháp phương trình, hãy giải quyết x-3=0 và x+5=0.
a+b=2 ab=1\left(-15\right)=-15
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-15. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,15 -3,5
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -15.
-1+15=14 -3+5=2
Tính tổng của mỗi cặp.
a=-3 b=5
Nghiệm là cặp có tổng bằng 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Viết lại x^{2}+2x-15 dưới dạng \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Phân tích x trong đầu tiên và 5 trong nhóm thứ hai.
\left(x-3\right)\left(x+5\right)
Phân tích số hạng chung x-3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=3 x=-5
Để tìm các giải pháp phương trình, hãy giải quyết x-3=0 và x+5=0.
x^{2}+2x-15=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 2 vào b và -15 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Bình phương 2.
x=\frac{-2±\sqrt{4+60}}{2}
Nhân -4 với -15.
x=\frac{-2±\sqrt{64}}{2}
Cộng 4 vào 60.
x=\frac{-2±8}{2}
Lấy căn bậc hai của 64.
x=\frac{6}{2}
Bây giờ, giải phương trình x=\frac{-2±8}{2} khi ± là số dương. Cộng -2 vào 8.
x=3
Chia 6 cho 2.
x=-\frac{10}{2}
Bây giờ, giải phương trình x=\frac{-2±8}{2} khi ± là số âm. Trừ 8 khỏi -2.
x=-5
Chia -10 cho 2.
x=3 x=-5
Hiện phương trình đã được giải.
x^{2}+2x-15=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Cộng 15 vào cả hai vế của phương trình.
x^{2}+2x=-\left(-15\right)
Trừ -15 cho chính nó ta có 0.
x^{2}+2x=15
Trừ -15 khỏi 0.
x^{2}+2x+1^{2}=15+1^{2}
Chia 2, hệ số của số hạng x, cho 2 để có kết quả 1. Sau đó, cộng bình phương của 1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+2x+1=15+1
Bình phương 1.
x^{2}+2x+1=16
Cộng 15 vào 1.
\left(x+1\right)^{2}=16
Phân tích x^{2}+2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Lấy căn bậc hai của cả hai vế của phương trình.
x+1=4 x+1=-4
Rút gọn.
x=3 x=-5
Trừ 1 khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}