Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}+2x-48=0
Trừ 48 khỏi cả hai vế.
a+b=2 ab=-48
Để giải phương trình, phân tích x^{2}+2x-48 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,48 -2,24 -3,16 -4,12 -6,8
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tính tổng của mỗi cặp.
a=-6 b=8
Nghiệm là cặp có tổng bằng 2.
\left(x-6\right)\left(x+8\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=6 x=-8
Để tìm các giải pháp phương trình, hãy giải quyết x-6=0 và x+8=0.
x^{2}+2x-48=0
Trừ 48 khỏi cả hai vế.
a+b=2 ab=1\left(-48\right)=-48
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-48. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,48 -2,24 -3,16 -4,12 -6,8
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tính tổng của mỗi cặp.
a=-6 b=8
Nghiệm là cặp có tổng bằng 2.
\left(x^{2}-6x\right)+\left(8x-48\right)
Viết lại x^{2}+2x-48 dưới dạng \left(x^{2}-6x\right)+\left(8x-48\right).
x\left(x-6\right)+8\left(x-6\right)
Phân tích x trong đầu tiên và 8 trong nhóm thứ hai.
\left(x-6\right)\left(x+8\right)
Phân tích số hạng chung x-6 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=6 x=-8
Để tìm các giải pháp phương trình, hãy giải quyết x-6=0 và x+8=0.
x^{2}+2x=48
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x^{2}+2x-48=48-48
Trừ 48 khỏi cả hai vế của phương trình.
x^{2}+2x-48=0
Trừ 48 cho chính nó ta có 0.
x=\frac{-2±\sqrt{2^{2}-4\left(-48\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 2 vào b và -48 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-48\right)}}{2}
Bình phương 2.
x=\frac{-2±\sqrt{4+192}}{2}
Nhân -4 với -48.
x=\frac{-2±\sqrt{196}}{2}
Cộng 4 vào 192.
x=\frac{-2±14}{2}
Lấy căn bậc hai của 196.
x=\frac{12}{2}
Bây giờ, giải phương trình x=\frac{-2±14}{2} khi ± là số dương. Cộng -2 vào 14.
x=6
Chia 12 cho 2.
x=-\frac{16}{2}
Bây giờ, giải phương trình x=\frac{-2±14}{2} khi ± là số âm. Trừ 14 khỏi -2.
x=-8
Chia -16 cho 2.
x=6 x=-8
Hiện phương trình đã được giải.
x^{2}+2x=48
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}+2x+1^{2}=48+1^{2}
Chia 2, hệ số của số hạng x, cho 2 để có kết quả 1. Sau đó, cộng bình phương của 1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+2x+1=48+1
Bình phương 1.
x^{2}+2x+1=49
Cộng 48 vào 1.
\left(x+1\right)^{2}=49
Phân tích x^{2}+2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{49}
Lấy căn bậc hai của cả hai vế của phương trình.
x+1=7 x+1=-7
Rút gọn.
x=6 x=-8
Trừ 1 khỏi cả hai vế của phương trình.