Chuyển đến nội dung chính
Tìm x (complex solution)
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}+2x+3=1
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x^{2}+2x+3-1=1-1
Trừ 1 khỏi cả hai vế của phương trình.
x^{2}+2x+3-1=0
Trừ 1 cho chính nó ta có 0.
x^{2}+2x+2=0
Trừ 1 khỏi 3.
x=\frac{-2±\sqrt{2^{2}-4\times 2}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 2 vào b và 2 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2}}{2}
Bình phương 2.
x=\frac{-2±\sqrt{4-8}}{2}
Nhân -4 với 2.
x=\frac{-2±\sqrt{-4}}{2}
Cộng 4 vào -8.
x=\frac{-2±2i}{2}
Lấy căn bậc hai của -4.
x=\frac{-2+2i}{2}
Bây giờ, giải phương trình x=\frac{-2±2i}{2} khi ± là số dương. Cộng -2 vào 2i.
x=-1+i
Chia -2+2i cho 2.
x=\frac{-2-2i}{2}
Bây giờ, giải phương trình x=\frac{-2±2i}{2} khi ± là số âm. Trừ 2i khỏi -2.
x=-1-i
Chia -2-2i cho 2.
x=-1+i x=-1-i
Hiện phương trình đã được giải.
x^{2}+2x+3=1
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}+2x+3-3=1-3
Trừ 3 khỏi cả hai vế của phương trình.
x^{2}+2x=1-3
Trừ 3 cho chính nó ta có 0.
x^{2}+2x=-2
Trừ 3 khỏi 1.
x^{2}+2x+1^{2}=-2+1^{2}
Chia 2, hệ số của số hạng x, cho 2 để có kết quả 1. Sau đó, cộng bình phương của 1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+2x+1=-2+1
Bình phương 1.
x^{2}+2x+1=-1
Cộng -2 vào 1.
\left(x+1\right)^{2}=-1
Phân tích x^{2}+2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-1}
Lấy căn bậc hai của cả hai vế của phương trình.
x+1=i x+1=-i
Rút gọn.
x=-1+i x=-1-i
Trừ 1 khỏi cả hai vế của phương trình.