Tìm s
\left\{\begin{matrix}s=\frac{x}{w-c^{3}}\text{, }&w\neq c^{3}\\s\in \mathrm{R}\text{, }&x=0\text{ and }w=c^{3}\end{matrix}\right,
Tìm c
\left\{\begin{matrix}c=\sqrt[3]{w-\frac{x}{s}}\text{, }&s\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }s=0\end{matrix}\right,
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
sw-sc^{3}=x
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
-sc^{3}+sw=x
Sắp xếp lại các số hạng.
\left(-c^{3}+w\right)s=x
Kết hợp tất cả các số hạng chứa s.
\left(w-c^{3}\right)s=x
Phương trình đang ở dạng chuẩn.
\frac{\left(w-c^{3}\right)s}{w-c^{3}}=\frac{x}{w-c^{3}}
Chia cả hai vế cho w-c^{3}.
s=\frac{x}{w-c^{3}}
Việc chia cho w-c^{3} sẽ làm mất phép nhân với w-c^{3}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}