Tìm d
d=-7
d=1
Chia sẻ
Đã sao chép vào bảng tạm
d-\frac{7-6d}{d}=0
Trừ \frac{7-6d}{d} khỏi cả hai vế.
\frac{dd}{d}-\frac{7-6d}{d}=0
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Nhân d với \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Do \frac{dd}{d} và \frac{7-6d}{d} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
\frac{d^{2}-7+6d}{d}=0
Thực hiện nhân trong dd-\left(7-6d\right).
d^{2}-7+6d=0
Biến d không thể bằng 0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với d.
d^{2}+6d-7=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=6 ab=-7
Để giải phương trình, phân tích d^{2}+6d-7 thành thừa số bằng công thức d^{2}+\left(a+b\right)d+ab=\left(d+a\right)\left(d+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(d-1\right)\left(d+7\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(d+a\right)\left(d+b\right) sử dụng các giá trị tìm được.
d=1 d=-7
Để tìm các giải pháp phương trình, hãy giải quyết d-1=0 và d+7=0.
d-\frac{7-6d}{d}=0
Trừ \frac{7-6d}{d} khỏi cả hai vế.
\frac{dd}{d}-\frac{7-6d}{d}=0
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Nhân d với \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Do \frac{dd}{d} và \frac{7-6d}{d} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
\frac{d^{2}-7+6d}{d}=0
Thực hiện nhân trong dd-\left(7-6d\right).
d^{2}-7+6d=0
Biến d không thể bằng 0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với d.
d^{2}+6d-7=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=6 ab=1\left(-7\right)=-7
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là d^{2}+ad+bd-7. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(d^{2}-d\right)+\left(7d-7\right)
Viết lại d^{2}+6d-7 dưới dạng \left(d^{2}-d\right)+\left(7d-7\right).
d\left(d-1\right)+7\left(d-1\right)
Phân tích d trong đầu tiên và 7 trong nhóm thứ hai.
\left(d-1\right)\left(d+7\right)
Phân tích số hạng chung d-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
d=1 d=-7
Để tìm các giải pháp phương trình, hãy giải quyết d-1=0 và d+7=0.
d-\frac{7-6d}{d}=0
Trừ \frac{7-6d}{d} khỏi cả hai vế.
\frac{dd}{d}-\frac{7-6d}{d}=0
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Nhân d với \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Do \frac{dd}{d} và \frac{7-6d}{d} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
\frac{d^{2}-7+6d}{d}=0
Thực hiện nhân trong dd-\left(7-6d\right).
d^{2}-7+6d=0
Biến d không thể bằng 0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với d.
d^{2}+6d-7=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
d=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 6 vào b và -7 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Bình phương 6.
d=\frac{-6±\sqrt{36+28}}{2}
Nhân -4 với -7.
d=\frac{-6±\sqrt{64}}{2}
Cộng 36 vào 28.
d=\frac{-6±8}{2}
Lấy căn bậc hai của 64.
d=\frac{2}{2}
Bây giờ, giải phương trình d=\frac{-6±8}{2} khi ± là số dương. Cộng -6 vào 8.
d=1
Chia 2 cho 2.
d=-\frac{14}{2}
Bây giờ, giải phương trình d=\frac{-6±8}{2} khi ± là số âm. Trừ 8 khỏi -6.
d=-7
Chia -14 cho 2.
d=1 d=-7
Hiện phương trình đã được giải.
d-\frac{7-6d}{d}=0
Trừ \frac{7-6d}{d} khỏi cả hai vế.
\frac{dd}{d}-\frac{7-6d}{d}=0
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Nhân d với \frac{d}{d}.
\frac{dd-\left(7-6d\right)}{d}=0
Do \frac{dd}{d} và \frac{7-6d}{d} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
\frac{d^{2}-7+6d}{d}=0
Thực hiện nhân trong dd-\left(7-6d\right).
d^{2}-7+6d=0
Biến d không thể bằng 0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với d.
d^{2}+6d=7
Thêm 7 vào cả hai vế. Bất kỳ giá trị nào cộng với không cũng bằng chính nó.
d^{2}+6d+3^{2}=7+3^{2}
Chia 6, hệ số của số hạng x, cho 2 để có kết quả 3. Sau đó, cộng bình phương của 3 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
d^{2}+6d+9=7+9
Bình phương 3.
d^{2}+6d+9=16
Cộng 7 vào 9.
\left(d+3\right)^{2}=16
Phân tích d^{2}+6d+9 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+3\right)^{2}}=\sqrt{16}
Lấy căn bậc hai của cả hai vế của phương trình.
d+3=4 d+3=-4
Rút gọn.
d=1 d=-7
Trừ 3 khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}