Phân tích thành thừa số
ab\left(x-8\right)\left(x+3\right)
Tính giá trị
ab\left(x-8\right)\left(x+3\right)
Đồ thị
Bài kiểm tra
Algebra
a b x ^ { 2 } - 5 a b x - 24 a b
Chia sẻ
Đã sao chép vào bảng tạm
ab\left(x^{2}-5x-24\right)
Phân tích ab thành thừa số.
p+q=-5 pq=1\left(-24\right)=-24
Xét x^{2}-5x-24. Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là x^{2}+px+qx-24. Để tìm p và q, hãy thiết lập hệ thống sẽ được giải.
1,-24 2,-12 3,-8 4,-6
Vì pq là âm, p và q có dấu đối diện. Vì p+q là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tính tổng của mỗi cặp.
p=-8 q=3
Nghiệm là cặp có tổng bằng -5.
\left(x^{2}-8x\right)+\left(3x-24\right)
Viết lại x^{2}-5x-24 dưới dạng \left(x^{2}-8x\right)+\left(3x-24\right).
x\left(x-8\right)+3\left(x-8\right)
Phân tích x trong đầu tiên và 3 trong nhóm thứ hai.
\left(x-8\right)\left(x+3\right)
Phân tích số hạng chung x-8 thành thừa số bằng cách sử dụng thuộc tính phân phối.
ab\left(x-8\right)\left(x+3\right)
Viết lại biểu thức đã được phân tích hết thành thừa số.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}