Chuyển đến nội dung chính
Phân tích thành thừa số
Tick mark Image
Tính giá trị
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

p+q=12 pq=1\times 32=32
Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là a^{2}+pa+qa+32. Để tìm p và q, hãy thiết lập hệ thống sẽ được giải.
1,32 2,16 4,8
Vì pq là dương, p và q có cùng dấu hiệu. Vì p+q là số dương, p và q đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 32.
1+32=33 2+16=18 4+8=12
Tính tổng của mỗi cặp.
p=4 q=8
Nghiệm là cặp có tổng bằng 12.
\left(a^{2}+4a\right)+\left(8a+32\right)
Viết lại a^{2}+12a+32 dưới dạng \left(a^{2}+4a\right)+\left(8a+32\right).
a\left(a+4\right)+8\left(a+4\right)
Phân tích a trong đầu tiên và 8 trong nhóm thứ hai.
\left(a+4\right)\left(a+8\right)
Phân tích số hạng chung a+4 thành thừa số bằng cách sử dụng thuộc tính phân phối.
a^{2}+12a+32=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
a=\frac{-12±\sqrt{12^{2}-4\times 32}}{2}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
a=\frac{-12±\sqrt{144-4\times 32}}{2}
Bình phương 12.
a=\frac{-12±\sqrt{144-128}}{2}
Nhân -4 với 32.
a=\frac{-12±\sqrt{16}}{2}
Cộng 144 vào -128.
a=\frac{-12±4}{2}
Lấy căn bậc hai của 16.
a=-\frac{8}{2}
Bây giờ, giải phương trình a=\frac{-12±4}{2} khi ± là số dương. Cộng -12 vào 4.
a=-4
Chia -8 cho 2.
a=-\frac{16}{2}
Bây giờ, giải phương trình a=\frac{-12±4}{2} khi ± là số âm. Trừ 4 khỏi -12.
a=-8
Chia -16 cho 2.
a^{2}+12a+32=\left(a-\left(-4\right)\right)\left(a-\left(-8\right)\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế -4 vào x_{1} và -8 vào x_{2}.
a^{2}+12a+32=\left(a+4\right)\left(a+8\right)
Tối giản mọi biểu thức có dạng p-\left(-q\right) thành p+q.