Tìm l
l=\frac{49\times \left(\frac{T}{\pi }\right)^{2}}{8}
T\geq 0
Tìm T (complex solution)
T=\frac{2\pi \sqrt{2l}}{7}
Tìm l (complex solution)
l=\frac{49\times \left(\frac{T}{\pi }\right)^{2}}{8}
|\frac{arg(T^{2})}{2}-arg(T)|<\pi \text{ or }T=0
Tìm T
T=\frac{2\pi \sqrt{2l}}{7}
l\geq 0
Chia sẻ
Đã sao chép vào bảng tạm
T=4\pi \sqrt{\frac{l}{98}}
Nhân 2 với 2 để có được 4.
4\pi \sqrt{\frac{l}{98}}=T
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
\frac{4\pi \sqrt{\frac{1}{98}l}}{4\pi }=\frac{T}{4\pi }
Chia cả hai vế cho 4\pi .
\sqrt{\frac{1}{98}l}=\frac{T}{4\pi }
Việc chia cho 4\pi sẽ làm mất phép nhân với 4\pi .
\frac{1}{98}l=\frac{T^{2}}{16\pi ^{2}}
Bình phương cả hai vế của phương trình.
\frac{\frac{1}{98}l}{\frac{1}{98}}=\frac{T^{2}}{\frac{1}{98}\times 16\pi ^{2}}
Nhân cả hai vế với 98.
l=\frac{T^{2}}{\frac{1}{98}\times 16\pi ^{2}}
Việc chia cho \frac{1}{98} sẽ làm mất phép nhân với \frac{1}{98}.
l=\frac{49T^{2}}{8\pi ^{2}}
Chia \frac{T^{2}}{16\pi ^{2}} cho \frac{1}{98} bằng cách nhân \frac{T^{2}}{16\pi ^{2}} với nghịch đảo của \frac{1}{98}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}