Tìm M
M=\frac{a^{2}-16b}{4}
a\neq 0\text{ and }b\neq 0
Tìm a (complex solution)
a=-2\sqrt{M+4b}
a=2\sqrt{M+4b}\text{, }M\neq -4b\text{ and }b\neq 0
Tìm a
a=2\sqrt{M+4b}
a=-2\sqrt{M+4b}\text{, }M>-4b\text{ and }b\neq 0
Chia sẻ
Đã sao chép vào bảng tạm
M=\left(-b\right)^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Sử dụng định lý nhị thức \left(p+q\right)^{2}=p^{2}+2pq+q^{2} để bung rộng \left(-b+\frac{1}{2}a\right)^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Tính -b mũ 2 và ta có b^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-\left(ba-3b\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Sử dụng tính chất phân phối để nhân b với a-3.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-ba+3b\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Để tìm số đối của ba-3b, hãy tìm số đối của mỗi số hạng.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(4b-ba\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Kết hợp b và 3b để có được 4b.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Để tìm số đối của 4b-ba, hãy tìm số đối của mỗi số hạng.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0a^{3}b}{ab}
Nhân 0 với 75 để có được 0.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0}{ab}
Bất kỳ giá trị nào nhân với không cũng bằng không.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}}{ab}
Phân tích thành thừa số cho biểu thức chưa được phân tích thành thừa số trong \frac{ab^{3}-0}{ab}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-b^{2}
Giản ước ab ở cả tử số và mẫu số.
M=b^{2}+\frac{1}{4}a^{2}-4b-b^{2}
Kết hợp -ba và ba để có được 0.
M=\frac{1}{4}a^{2}-4b
Kết hợp b^{2} và -b^{2} để có được 0.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}