Tìm x
x=-6
x=-3
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
a+b=9 ab=18
Để giải phương trình, phân tích x^{2}+9x+18 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,18 2,9 3,6
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 18.
1+18=19 2+9=11 3+6=9
Tính tổng của mỗi cặp.
a=3 b=6
Nghiệm là cặp có tổng bằng 9.
\left(x+3\right)\left(x+6\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=-3 x=-6
Để tìm các giải pháp phương trình, hãy giải quyết x+3=0 và x+6=0.
a+b=9 ab=1\times 18=18
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx+18. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,18 2,9 3,6
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 18.
1+18=19 2+9=11 3+6=9
Tính tổng của mỗi cặp.
a=3 b=6
Nghiệm là cặp có tổng bằng 9.
\left(x^{2}+3x\right)+\left(6x+18\right)
Viết lại x^{2}+9x+18 dưới dạng \left(x^{2}+3x\right)+\left(6x+18\right).
x\left(x+3\right)+6\left(x+3\right)
Phân tích x trong đầu tiên và 6 trong nhóm thứ hai.
\left(x+3\right)\left(x+6\right)
Phân tích số hạng chung x+3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=-3 x=-6
Để tìm các giải pháp phương trình, hãy giải quyết x+3=0 và x+6=0.
x^{2}+9x+18=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-9±\sqrt{9^{2}-4\times 18}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 9 vào b và 18 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 18}}{2}
Bình phương 9.
x=\frac{-9±\sqrt{81-72}}{2}
Nhân -4 với 18.
x=\frac{-9±\sqrt{9}}{2}
Cộng 81 vào -72.
x=\frac{-9±3}{2}
Lấy căn bậc hai của 9.
x=-\frac{6}{2}
Bây giờ, giải phương trình x=\frac{-9±3}{2} khi ± là số dương. Cộng -9 vào 3.
x=-3
Chia -6 cho 2.
x=-\frac{12}{2}
Bây giờ, giải phương trình x=\frac{-9±3}{2} khi ± là số âm. Trừ 3 khỏi -9.
x=-6
Chia -12 cho 2.
x=-3 x=-6
Hiện phương trình đã được giải.
x^{2}+9x+18=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}+9x+18-18=-18
Trừ 18 khỏi cả hai vế của phương trình.
x^{2}+9x=-18
Trừ 18 cho chính nó ta có 0.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-18+\left(\frac{9}{2}\right)^{2}
Chia 9, hệ số của số hạng x, cho 2 để có kết quả \frac{9}{2}. Sau đó, cộng bình phương của \frac{9}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+9x+\frac{81}{4}=-18+\frac{81}{4}
Bình phương \frac{9}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+9x+\frac{81}{4}=\frac{9}{4}
Cộng -18 vào \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{9}{4}
Phân tích x^{2}+9x+\frac{81}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{9}{2}=\frac{3}{2} x+\frac{9}{2}=-\frac{3}{2}
Rút gọn.
x=-3 x=-6
Trừ \frac{9}{2} khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}