Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=30 ab=9\times 25=225
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là 9x^{2}+ax+bx+25. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,225 3,75 5,45 9,25 15,15
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Tính tổng của mỗi cặp.
a=15 b=15
Nghiệm là cặp có tổng bằng 30.
\left(9x^{2}+15x\right)+\left(15x+25\right)
Viết lại 9x^{2}+30x+25 dưới dạng \left(9x^{2}+15x\right)+\left(15x+25\right).
3x\left(3x+5\right)+5\left(3x+5\right)
Phân tích 3x trong đầu tiên và 5 trong nhóm thứ hai.
\left(3x+5\right)\left(3x+5\right)
Phân tích số hạng chung 3x+5 thành thừa số bằng cách sử dụng thuộc tính phân phối.
\left(3x+5\right)^{2}
Viết lại thành bình phương nhị thức.
x=-\frac{5}{3}
Giải 3x+5=0 để tìm nghiệm cho phương trình.
9x^{2}+30x+25=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-30±\sqrt{30^{2}-4\times 9\times 25}}{2\times 9}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 9 vào a, 30 vào b và 25 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 9\times 25}}{2\times 9}
Bình phương 30.
x=\frac{-30±\sqrt{900-36\times 25}}{2\times 9}
Nhân -4 với 9.
x=\frac{-30±\sqrt{900-900}}{2\times 9}
Nhân -36 với 25.
x=\frac{-30±\sqrt{0}}{2\times 9}
Cộng 900 vào -900.
x=-\frac{30}{2\times 9}
Lấy căn bậc hai của 0.
x=-\frac{30}{18}
Nhân 2 với 9.
x=-\frac{5}{3}
Rút gọn phân số \frac{-30}{18} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 6.
9x^{2}+30x+25=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
9x^{2}+30x+25-25=-25
Trừ 25 khỏi cả hai vế của phương trình.
9x^{2}+30x=-25
Trừ 25 cho chính nó ta có 0.
\frac{9x^{2}+30x}{9}=-\frac{25}{9}
Chia cả hai vế cho 9.
x^{2}+\frac{30}{9}x=-\frac{25}{9}
Việc chia cho 9 sẽ làm mất phép nhân với 9.
x^{2}+\frac{10}{3}x=-\frac{25}{9}
Rút gọn phân số \frac{30}{9} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(\frac{5}{3}\right)^{2}
Chia \frac{10}{3}, hệ số của số hạng x, cho 2 để có kết quả \frac{5}{3}. Sau đó, cộng bình phương của \frac{5}{3} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{-25+25}{9}
Bình phương \frac{5}{3} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{10}{3}x+\frac{25}{9}=0
Cộng -\frac{25}{9} với \frac{25}{9} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{5}{3}\right)^{2}=0
Phân tích x^{2}+\frac{10}{3}x+\frac{25}{9} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{0}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{5}{3}=0 x+\frac{5}{3}=0
Rút gọn.
x=-\frac{5}{3} x=-\frac{5}{3}
Trừ \frac{5}{3} khỏi cả hai vế của phương trình.
x=-\frac{5}{3}
Hiện phương trình đã được giải. Nghiệm là như nhau.