Lấy vi phân theo x_0
12
Tính giá trị
12x_{0}+2125
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\mathrm{d}}{\mathrm{d}x_{0}}(2125+12x_{0})
Nhân 85 với 25 để có được 2125.
12x_{0}^{1-1}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
12x_{0}^{0}
Trừ 1 khỏi 1.
12\times 1
Với mọi số hạng t trừ 0, t^{0}=1.
12
Với mọi số hạng t, t\times 1=t và 1t=t.
2125+12x_{0}
Nhân 85 với 25 để có được 2125.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}