Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}-8x+16=0
Chia cả hai vế cho 5.
a+b=-8 ab=1\times 16=16
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx+16. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-16 -2,-8 -4,-4
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 16.
-1-16=-17 -2-8=-10 -4-4=-8
Tính tổng của mỗi cặp.
a=-4 b=-4
Nghiệm là cặp có tổng bằng -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Viết lại x^{2}-8x+16 dưới dạng \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Phân tích x trong đầu tiên và -4 trong nhóm thứ hai.
\left(x-4\right)\left(x-4\right)
Phân tích số hạng chung x-4 thành thừa số bằng cách sử dụng thuộc tính phân phối.
\left(x-4\right)^{2}
Viết lại thành bình phương nhị thức.
x=4
Giải x-4=0 để tìm nghiệm cho phương trình.
5x^{2}-40x+80=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 80}}{2\times 5}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 5 vào a, -40 vào b và 80 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 80}}{2\times 5}
Bình phương -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 80}}{2\times 5}
Nhân -4 với 5.
x=\frac{-\left(-40\right)±\sqrt{1600-1600}}{2\times 5}
Nhân -20 với 80.
x=\frac{-\left(-40\right)±\sqrt{0}}{2\times 5}
Cộng 1600 vào -1600.
x=-\frac{-40}{2\times 5}
Lấy căn bậc hai của 0.
x=\frac{40}{2\times 5}
Số đối của số -40 là 40.
x=\frac{40}{10}
Nhân 2 với 5.
x=4
Chia 40 cho 10.
5x^{2}-40x+80=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
5x^{2}-40x+80-80=-80
Trừ 80 khỏi cả hai vế của phương trình.
5x^{2}-40x=-80
Trừ 80 cho chính nó ta có 0.
\frac{5x^{2}-40x}{5}=-\frac{80}{5}
Chia cả hai vế cho 5.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{80}{5}
Việc chia cho 5 sẽ làm mất phép nhân với 5.
x^{2}-8x=-\frac{80}{5}
Chia -40 cho 5.
x^{2}-8x=-16
Chia -80 cho 5.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Chia -8, hệ số của số hạng x, cho 2 để có kết quả -4. Sau đó, cộng bình phương của -4 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-8x+16=-16+16
Bình phương -4.
x^{2}-8x+16=0
Cộng -16 vào 16.
\left(x-4\right)^{2}=0
Phân tích x^{2}-8x+16 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Lấy căn bậc hai của cả hai vế của phương trình.
x-4=0 x-4=0
Rút gọn.
x=4 x=4
Cộng 4 vào cả hai vế của phương trình.
x=4
Hiện phương trình đã được giải. Nghiệm là như nhau.