Tìm x
x=6
x=0
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x\left(5x-30\right)=0
Phân tích x thành thừa số.
x=0 x=6
Để tìm các giải pháp phương trình, hãy giải quyết x=0 và 5x-30=0.
5x^{2}-30x=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}}}{2\times 5}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 5 vào a, -30 vào b và 0 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±30}{2\times 5}
Lấy căn bậc hai của \left(-30\right)^{2}.
x=\frac{30±30}{2\times 5}
Số đối của số -30 là 30.
x=\frac{30±30}{10}
Nhân 2 với 5.
x=\frac{60}{10}
Bây giờ, giải phương trình x=\frac{30±30}{10} khi ± là số dương. Cộng 30 vào 30.
x=6
Chia 60 cho 10.
x=\frac{0}{10}
Bây giờ, giải phương trình x=\frac{30±30}{10} khi ± là số âm. Trừ 30 khỏi 30.
x=0
Chia 0 cho 10.
x=6 x=0
Hiện phương trình đã được giải.
5x^{2}-30x=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
\frac{5x^{2}-30x}{5}=\frac{0}{5}
Chia cả hai vế cho 5.
x^{2}+\left(-\frac{30}{5}\right)x=\frac{0}{5}
Việc chia cho 5 sẽ làm mất phép nhân với 5.
x^{2}-6x=\frac{0}{5}
Chia -30 cho 5.
x^{2}-6x=0
Chia 0 cho 5.
x^{2}-6x+\left(-3\right)^{2}=\left(-3\right)^{2}
Chia -6, hệ số của số hạng x, cho 2 để có kết quả -3. Sau đó, cộng bình phương của -3 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-6x+9=9
Bình phương -3.
\left(x-3\right)^{2}=9
Phân tích x^{2}-6x+9 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
Lấy căn bậc hai của cả hai vế của phương trình.
x-3=3 x-3=-3
Rút gọn.
x=6 x=0
Cộng 3 vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}