Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

4x^{2}+6x-3=12
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
4x^{2}+6x-3-12=12-12
Trừ 12 khỏi cả hai vế của phương trình.
4x^{2}+6x-3-12=0
Trừ 12 cho chính nó ta có 0.
4x^{2}+6x-15=0
Trừ 12 khỏi -3.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-15\right)}}{2\times 4}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 4 vào a, 6 vào b và -15 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\left(-15\right)}}{2\times 4}
Bình phương 6.
x=\frac{-6±\sqrt{36-16\left(-15\right)}}{2\times 4}
Nhân -4 với 4.
x=\frac{-6±\sqrt{36+240}}{2\times 4}
Nhân -16 với -15.
x=\frac{-6±\sqrt{276}}{2\times 4}
Cộng 36 vào 240.
x=\frac{-6±2\sqrt{69}}{2\times 4}
Lấy căn bậc hai của 276.
x=\frac{-6±2\sqrt{69}}{8}
Nhân 2 với 4.
x=\frac{2\sqrt{69}-6}{8}
Bây giờ, giải phương trình x=\frac{-6±2\sqrt{69}}{8} khi ± là số dương. Cộng -6 vào 2\sqrt{69}.
x=\frac{\sqrt{69}-3}{4}
Chia -6+2\sqrt{69} cho 8.
x=\frac{-2\sqrt{69}-6}{8}
Bây giờ, giải phương trình x=\frac{-6±2\sqrt{69}}{8} khi ± là số âm. Trừ 2\sqrt{69} khỏi -6.
x=\frac{-\sqrt{69}-3}{4}
Chia -6-2\sqrt{69} cho 8.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Hiện phương trình đã được giải.
4x^{2}+6x-3=12
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
4x^{2}+6x-3-\left(-3\right)=12-\left(-3\right)
Cộng 3 vào cả hai vế của phương trình.
4x^{2}+6x=12-\left(-3\right)
Trừ -3 cho chính nó ta có 0.
4x^{2}+6x=15
Trừ -3 khỏi 12.
\frac{4x^{2}+6x}{4}=\frac{15}{4}
Chia cả hai vế cho 4.
x^{2}+\frac{6}{4}x=\frac{15}{4}
Việc chia cho 4 sẽ làm mất phép nhân với 4.
x^{2}+\frac{3}{2}x=\frac{15}{4}
Rút gọn phân số \frac{6}{4} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{15}{4}+\left(\frac{3}{4}\right)^{2}
Chia \frac{3}{2}, hệ số của số hạng x, cho 2 để có kết quả \frac{3}{4}. Sau đó, cộng bình phương của \frac{3}{4} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{15}{4}+\frac{9}{16}
Bình phương \frac{3}{4} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{69}{16}
Cộng \frac{15}{4} với \frac{9}{16} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{3}{4}\right)^{2}=\frac{69}{16}
Phân tích x^{2}+\frac{3}{2}x+\frac{9}{16} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{69}{16}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{3}{4}=\frac{\sqrt{69}}{4} x+\frac{3}{4}=-\frac{\sqrt{69}}{4}
Rút gọn.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Trừ \frac{3}{4} khỏi cả hai vế của phương trình.