Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

4x^{2}+9+12x=0
Tính \sqrt[3]{729} và được kết quả 9.
4x^{2}+12x+9=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=12 ab=4\times 9=36
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là 4x^{2}+ax+bx+9. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,36 2,18 3,12 4,9 6,6
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tính tổng của mỗi cặp.
a=6 b=6
Nghiệm là cặp có tổng bằng 12.
\left(4x^{2}+6x\right)+\left(6x+9\right)
Viết lại 4x^{2}+12x+9 dưới dạng \left(4x^{2}+6x\right)+\left(6x+9\right).
2x\left(2x+3\right)+3\left(2x+3\right)
Phân tích 2x trong đầu tiên và 3 trong nhóm thứ hai.
\left(2x+3\right)\left(2x+3\right)
Phân tích số hạng chung 2x+3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
\left(2x+3\right)^{2}
Viết lại thành bình phương nhị thức.
x=-\frac{3}{2}
Giải 2x+3=0 để tìm nghiệm cho phương trình.
4x^{2}+9+12x=0
Tính \sqrt[3]{729} và được kết quả 9.
4x^{2}+12x+9=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 4 vào a, 12 vào b và 9 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
Bình phương 12.
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
Nhân -4 với 4.
x=\frac{-12±\sqrt{144-144}}{2\times 4}
Nhân -16 với 9.
x=\frac{-12±\sqrt{0}}{2\times 4}
Cộng 144 vào -144.
x=-\frac{12}{2\times 4}
Lấy căn bậc hai của 0.
x=-\frac{12}{8}
Nhân 2 với 4.
x=-\frac{3}{2}
Rút gọn phân số \frac{-12}{8} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 4.
4x^{2}+9+12x=0
Tính \sqrt[3]{729} và được kết quả 9.
4x^{2}+12x=-9
Trừ 9 khỏi cả hai vế. Số không trừ đi bất kỳ giá trị nào cũng bằng số âm của giá trị đó.
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
Chia cả hai vế cho 4.
x^{2}+\frac{12}{4}x=-\frac{9}{4}
Việc chia cho 4 sẽ làm mất phép nhân với 4.
x^{2}+3x=-\frac{9}{4}
Chia 12 cho 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
Chia 3, hệ số của số hạng x, cho 2 để có kết quả \frac{3}{2}. Sau đó, cộng bình phương của \frac{3}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
Bình phương \frac{3}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+3x+\frac{9}{4}=0
Cộng -\frac{9}{4} với \frac{9}{4} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{3}{2}\right)^{2}=0
Phân tích x^{2}+3x+\frac{9}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{3}{2}=0 x+\frac{3}{2}=0
Rút gọn.
x=-\frac{3}{2} x=-\frac{3}{2}
Trừ \frac{3}{2} khỏi cả hai vế của phương trình.
x=-\frac{3}{2}
Hiện phương trình đã được giải. Nghiệm là như nhau.