Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

3x^{2}-15x-18=0
Trừ 18 khỏi cả hai vế.
x^{2}-5x-6=0
Chia cả hai vế cho 3.
a+b=-5 ab=1\left(-6\right)=-6
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-6. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-6 2,-3
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -6.
1-6=-5 2-3=-1
Tính tổng của mỗi cặp.
a=-6 b=1
Nghiệm là cặp có tổng bằng -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Viết lại x^{2}-5x-6 dưới dạng \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Phân tích x thành thừa số trong x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Phân tích số hạng chung x-6 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=6 x=-1
Để tìm các giải pháp phương trình, hãy giải quyết x-6=0 và x+1=0.
3x^{2}-15x=18
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
3x^{2}-15x-18=18-18
Trừ 18 khỏi cả hai vế của phương trình.
3x^{2}-15x-18=0
Trừ 18 cho chính nó ta có 0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 3 vào a, -15 vào b và -18 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
Bình phương -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
Nhân -4 với 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
Nhân -12 với -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
Cộng 225 vào 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
Lấy căn bậc hai của 441.
x=\frac{15±21}{2\times 3}
Số đối của số -15 là 15.
x=\frac{15±21}{6}
Nhân 2 với 3.
x=\frac{36}{6}
Bây giờ, giải phương trình x=\frac{15±21}{6} khi ± là số dương. Cộng 15 vào 21.
x=6
Chia 36 cho 6.
x=-\frac{6}{6}
Bây giờ, giải phương trình x=\frac{15±21}{6} khi ± là số âm. Trừ 21 khỏi 15.
x=-1
Chia -6 cho 6.
x=6 x=-1
Hiện phương trình đã được giải.
3x^{2}-15x=18
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
Chia cả hai vế cho 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
Việc chia cho 3 sẽ làm mất phép nhân với 3.
x^{2}-5x=\frac{18}{3}
Chia -15 cho 3.
x^{2}-5x=6
Chia 18 cho 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Chia -5, hệ số của số hạng x, cho 2 để có kết quả -\frac{5}{2}. Sau đó, cộng bình phương của -\frac{5}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Bình phương -\frac{5}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Cộng 6 vào \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Phân tích x^{2}-5x+\frac{25}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Rút gọn.
x=6 x=-1
Cộng \frac{5}{2} vào cả hai vế của phương trình.