Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

4x^{2}+10x=\left(x-1\right)\left(2x+5\right)
Sử dụng tính chất phân phối để nhân 2x với 2x+5.
4x^{2}+10x=2x^{2}+3x-5
Sử dụng tính chất phân phối để nhân x-1 với 2x+5 và kết hợp các số hạng tương đương.
4x^{2}+10x-2x^{2}=3x-5
Trừ 2x^{2} khỏi cả hai vế.
2x^{2}+10x=3x-5
Kết hợp 4x^{2} và -2x^{2} để có được 2x^{2}.
2x^{2}+10x-3x=-5
Trừ 3x khỏi cả hai vế.
2x^{2}+7x=-5
Kết hợp 10x và -3x để có được 7x.
2x^{2}+7x+5=0
Thêm 5 vào cả hai vế.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 2 vào a, 7 vào b và 5 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Bình phương 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Nhân -4 với 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Nhân -8 với 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Cộng 49 vào -40.
x=\frac{-7±3}{2\times 2}
Lấy căn bậc hai của 9.
x=\frac{-7±3}{4}
Nhân 2 với 2.
x=-\frac{4}{4}
Bây giờ, giải phương trình x=\frac{-7±3}{4} khi ± là số dương. Cộng -7 vào 3.
x=-1
Chia -4 cho 4.
x=-\frac{10}{4}
Bây giờ, giải phương trình x=\frac{-7±3}{4} khi ± là số âm. Trừ 3 khỏi -7.
x=-\frac{5}{2}
Rút gọn phân số \frac{-10}{4} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x=-1 x=-\frac{5}{2}
Hiện phương trình đã được giải.
4x^{2}+10x=\left(x-1\right)\left(2x+5\right)
Sử dụng tính chất phân phối để nhân 2x với 2x+5.
4x^{2}+10x=2x^{2}+3x-5
Sử dụng tính chất phân phối để nhân x-1 với 2x+5 và kết hợp các số hạng tương đương.
4x^{2}+10x-2x^{2}=3x-5
Trừ 2x^{2} khỏi cả hai vế.
2x^{2}+10x=3x-5
Kết hợp 4x^{2} và -2x^{2} để có được 2x^{2}.
2x^{2}+10x-3x=-5
Trừ 3x khỏi cả hai vế.
2x^{2}+7x=-5
Kết hợp 10x và -3x để có được 7x.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Chia cả hai vế cho 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Việc chia cho 2 sẽ làm mất phép nhân với 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
Chia \frac{7}{2}, hệ số của số hạng x, cho 2 để có kết quả \frac{7}{4}. Sau đó, cộng bình phương của \frac{7}{4} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Bình phương \frac{7}{4} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Cộng -\frac{5}{2} với \frac{49}{16} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
Phân tích x^{2}+\frac{7}{2}x+\frac{49}{16} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Rút gọn.
x=-1 x=-\frac{5}{2}
Trừ \frac{7}{4} khỏi cả hai vế của phương trình.