Tìm x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=-1
Đồ thị
Bài kiểm tra
Polynomial
2 x ^ { 2 } + 7 x + 5 = 0
Chia sẻ
Đã sao chép vào bảng tạm
a+b=7 ab=2\times 5=10
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là 2x^{2}+ax+bx+5. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,10 2,5
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 10.
1+10=11 2+5=7
Tính tổng của mỗi cặp.
a=2 b=5
Nghiệm là cặp có tổng bằng 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Viết lại 2x^{2}+7x+5 dưới dạng \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Phân tích 2x trong đầu tiên và 5 trong nhóm thứ hai.
\left(x+1\right)\left(2x+5\right)
Phân tích số hạng chung x+1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=-1 x=-\frac{5}{2}
Để tìm các giải pháp phương trình, hãy giải quyết x+1=0 và 2x+5=0.
2x^{2}+7x+5=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 2 vào a, 7 vào b và 5 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Bình phương 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Nhân -4 với 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Nhân -8 với 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Cộng 49 vào -40.
x=\frac{-7±3}{2\times 2}
Lấy căn bậc hai của 9.
x=\frac{-7±3}{4}
Nhân 2 với 2.
x=-\frac{4}{4}
Bây giờ, giải phương trình x=\frac{-7±3}{4} khi ± là số dương. Cộng -7 vào 3.
x=-1
Chia -4 cho 4.
x=-\frac{10}{4}
Bây giờ, giải phương trình x=\frac{-7±3}{4} khi ± là số âm. Trừ 3 khỏi -7.
x=-\frac{5}{2}
Rút gọn phân số \frac{-10}{4} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x=-1 x=-\frac{5}{2}
Hiện phương trình đã được giải.
2x^{2}+7x+5=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
2x^{2}+7x+5-5=-5
Trừ 5 khỏi cả hai vế của phương trình.
2x^{2}+7x=-5
Trừ 5 cho chính nó ta có 0.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Chia cả hai vế cho 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Việc chia cho 2 sẽ làm mất phép nhân với 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
Chia \frac{7}{2}, hệ số của số hạng x, cho 2 để có kết quả \frac{7}{4}. Sau đó, cộng bình phương của \frac{7}{4} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Bình phương \frac{7}{4} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Cộng -\frac{5}{2} với \frac{49}{16} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
Phân tích x^{2}+\frac{7}{2}x+\frac{49}{16} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Rút gọn.
x=-1 x=-\frac{5}{2}
Trừ \frac{7}{4} khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}