Phân tích thành thừa số
2\left(p-1\right)\left(p+6\right)p^{3}
Tính giá trị
2\left(p-1\right)\left(p+6\right)p^{3}
Chia sẻ
Đã sao chép vào bảng tạm
2\left(p^{5}+5p^{4}-6p^{3}\right)
Phân tích 2 thành thừa số.
p^{3}\left(p^{2}+5p-6\right)
Xét p^{5}+5p^{4}-6p^{3}. Phân tích p^{3} thành thừa số.
a+b=5 ab=1\left(-6\right)=-6
Xét p^{2}+5p-6. Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là p^{2}+ap+bp-6. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,6 -2,3
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -6.
-1+6=5 -2+3=1
Tính tổng của mỗi cặp.
a=-1 b=6
Nghiệm là cặp có tổng bằng 5.
\left(p^{2}-p\right)+\left(6p-6\right)
Viết lại p^{2}+5p-6 dưới dạng \left(p^{2}-p\right)+\left(6p-6\right).
p\left(p-1\right)+6\left(p-1\right)
Phân tích p trong đầu tiên và 6 trong nhóm thứ hai.
\left(p-1\right)\left(p+6\right)
Phân tích số hạng chung p-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
2p^{3}\left(p-1\right)\left(p+6\right)
Viết lại biểu thức đã được phân tích hết thành thừa số.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}