Lấy vi phân theo y
32y
Tính giá trị
16y^{2}+13
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\mathrm{d}}{\mathrm{d}y}(16y^{2}+13)
Nhân y với y để có được y^{2}.
2\times 16y^{2-1}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
32y^{2-1}
Nhân 2 với 16.
32y^{1}
Trừ 1 khỏi 2.
32y
Với mọi số hạng t, t^{1}=t.
16y^{2}+13
Nhân y với y để có được y^{2}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}