Chuyển đến nội dung chính
Phân tích thành thừa số
Tick mark Image
Tính giá trị
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=-26 ab=16\times 3=48
Phân tích biểu thức thành thừa số bằng cách nhóm. Trước tiên, biểu thức cần được viết lại là 16x^{2}+ax+bx+3. Để tìm a và b, hãy thiết lập hệ thống để giải quyết.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Kể từ khi ab Dương, a và b có cùng ký hiệu. Do a+b âm, a và b đều là âm tính. Liệt kê tất cả cặp số nguyên có tích bằng 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Tính tổng của mỗi cặp.
a=-24 b=-2
Nghiệm là cặp có tổng bằng -26.
\left(16x^{2}-24x\right)+\left(-2x+3\right)
Viết lại 16x^{2}-26x+3 dưới dạng \left(16x^{2}-24x\right)+\left(-2x+3\right).
8x\left(2x-3\right)-\left(2x-3\right)
Phân tích 8x thành thừa số trong nhóm thứ nhất và -1 trong nhóm thứ hai.
\left(2x-3\right)\left(8x-1\right)
Phân tích số hạng chung 2x-3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
16x^{2}-26x+3=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 16\times 3}}{2\times 16}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 16\times 3}}{2\times 16}
Bình phương -26.
x=\frac{-\left(-26\right)±\sqrt{676-64\times 3}}{2\times 16}
Nhân -4 với 16.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2\times 16}
Nhân -64 với 3.
x=\frac{-\left(-26\right)±\sqrt{484}}{2\times 16}
Cộng 676 vào -192.
x=\frac{-\left(-26\right)±22}{2\times 16}
Lấy căn bậc hai của 484.
x=\frac{26±22}{2\times 16}
Số đối của số -26 là 26.
x=\frac{26±22}{32}
Nhân 2 với 16.
x=\frac{48}{32}
Bây giờ, giải phương trình x=\frac{26±22}{32} khi ± là số dương. Cộng 26 vào 22.
x=\frac{3}{2}
Rút gọn phân số \frac{48}{32} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 16.
x=\frac{4}{32}
Bây giờ, giải phương trình x=\frac{26±22}{32} khi ± là số âm. Trừ 22 khỏi 26.
x=\frac{1}{8}
Rút gọn phân số \frac{4}{32} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 4.
16x^{2}-26x+3=16\left(x-\frac{3}{2}\right)\left(x-\frac{1}{8}\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế \frac{3}{2} vào x_{1} và \frac{1}{8} vào x_{2}.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\left(x-\frac{1}{8}\right)
Trừ \frac{3}{2} khỏi x bằng cách tìm một mẫu số chung và trừ các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\times \frac{8x-1}{8}
Trừ \frac{1}{8} khỏi x bằng cách tìm một mẫu số chung và trừ các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{2\times 8}
Nhân \frac{2x-3}{2} với \frac{8x-1}{8} bằng cách nhân tử số với tử số và mẫu số với mẫu số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{16}
Nhân 2 với 8.
16x^{2}-26x+3=\left(2x-3\right)\left(8x-1\right)
Giản ước thừa số chung lớn nhất 16 trong 16 và 16.