Chuyển đến nội dung chính
Phân tích thành thừa số
Tick mark Image
Tính giá trị
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=19 ab=16\times 3=48
Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là 16x^{2}+ax+bx+3. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,48 2,24 3,16 4,12 6,8
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là số dương, a và b đều là số dương. Liệt kê tất cả cặp số nguyên có tích bằng 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Tính tổng của mỗi cặp.
a=3 b=16
Nghiệm là cặp có tổng bằng 19.
\left(16x^{2}+3x\right)+\left(16x+3\right)
Viết lại 16x^{2}+19x+3 dưới dạng \left(16x^{2}+3x\right)+\left(16x+3\right).
x\left(16x+3\right)+16x+3
Phân tích x thành thừa số trong 16x^{2}+3x.
\left(16x+3\right)\left(x+1\right)
Phân tích số hạng chung 16x+3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
16x^{2}+19x+3=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 16\times 3}}{2\times 16}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-19±\sqrt{361-4\times 16\times 3}}{2\times 16}
Bình phương 19.
x=\frac{-19±\sqrt{361-64\times 3}}{2\times 16}
Nhân -4 với 16.
x=\frac{-19±\sqrt{361-192}}{2\times 16}
Nhân -64 với 3.
x=\frac{-19±\sqrt{169}}{2\times 16}
Cộng 361 vào -192.
x=\frac{-19±13}{2\times 16}
Lấy căn bậc hai của 169.
x=\frac{-19±13}{32}
Nhân 2 với 16.
x=-\frac{6}{32}
Bây giờ, giải phương trình x=\frac{-19±13}{32} khi ± là số dương. Cộng -19 vào 13.
x=-\frac{3}{16}
Rút gọn phân số \frac{-6}{32} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x=-\frac{32}{32}
Bây giờ, giải phương trình x=\frac{-19±13}{32} khi ± là số âm. Trừ 13 khỏi -19.
x=-1
Chia -32 cho 32.
16x^{2}+19x+3=16\left(x-\left(-\frac{3}{16}\right)\right)\left(x-\left(-1\right)\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế -\frac{3}{16} vào x_{1} và -1 vào x_{2}.
16x^{2}+19x+3=16\left(x+\frac{3}{16}\right)\left(x+1\right)
Tối giản mọi biểu thức có dạng p-\left(-q\right) thành p+q.
16x^{2}+19x+3=16\times \frac{16x+3}{16}\left(x+1\right)
Cộng \frac{3}{16} với x bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
16x^{2}+19x+3=\left(16x+3\right)\left(x+1\right)
Loại bỏ thừa số chung lớn nhất 16 trong 16 và 16.