Tìm x
x=\frac{3\sqrt{17}-11}{2}\approx 0,684658438
x=\frac{-3\sqrt{17}-11}{2}\approx -11,684658438
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{2}+11x-8=0
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
x=\frac{-11±\sqrt{11^{2}-4\left(-8\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 11 vào b và -8 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-8\right)}}{2}
Bình phương 11.
x=\frac{-11±\sqrt{121+32}}{2}
Nhân -4 với -8.
x=\frac{-11±\sqrt{153}}{2}
Cộng 121 vào 32.
x=\frac{-11±3\sqrt{17}}{2}
Lấy căn bậc hai của 153.
x=\frac{3\sqrt{17}-11}{2}
Bây giờ, giải phương trình x=\frac{-11±3\sqrt{17}}{2} khi ± là số dương. Cộng -11 vào 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{2}
Bây giờ, giải phương trình x=\frac{-11±3\sqrt{17}}{2} khi ± là số âm. Trừ 3\sqrt{17} khỏi -11.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Hiện phương trình đã được giải.
x^{2}+11x-8=0
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
x^{2}+11x=8
Thêm 8 vào cả hai vế. Bất kỳ giá trị nào cộng với không cũng bằng chính nó.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=8+\left(\frac{11}{2}\right)^{2}
Chia 11, hệ số của số hạng x, cho 2 để có kết quả \frac{11}{2}. Sau đó, cộng bình phương của \frac{11}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+11x+\frac{121}{4}=8+\frac{121}{4}
Bình phương \frac{11}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+11x+\frac{121}{4}=\frac{153}{4}
Cộng 8 vào \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{153}{4}
Phân tích x^{2}+11x+\frac{121}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{11}{2}=\frac{3\sqrt{17}}{2} x+\frac{11}{2}=-\frac{3\sqrt{17}}{2}
Rút gọn.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Trừ \frac{11}{2} khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}