Tìm x
x=\frac{1}{2}=0,5
x=-1
Đồ thị
Bài kiểm tra
Polynomial
-2 { x }^{ 2 } -x+1 = 0
Chia sẻ
Đã sao chép vào bảng tạm
a+b=-1 ab=-2=-2
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là -2x^{2}+ax+bx+1. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=1 b=-2
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Cặp duy nhất này là nghiệm của hệ.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
Viết lại -2x^{2}-x+1 dưới dạng \left(-2x^{2}+x\right)+\left(-2x+1\right).
-x\left(2x-1\right)-\left(2x-1\right)
Phân tích -x trong đầu tiên và -1 trong nhóm thứ hai.
\left(2x-1\right)\left(-x-1\right)
Phân tích số hạng chung 2x-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=\frac{1}{2} x=-1
Để tìm các giải pháp phương trình, hãy giải quyết 2x-1=0 và -x-1=0.
-2x^{2}-x+1=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế -2 vào a, -1 vào b và 1 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-2\right)}
Nhân -4 với -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-2\right)}
Cộng 1 vào 8.
x=\frac{-\left(-1\right)±3}{2\left(-2\right)}
Lấy căn bậc hai của 9.
x=\frac{1±3}{2\left(-2\right)}
Số đối của số -1 là 1.
x=\frac{1±3}{-4}
Nhân 2 với -2.
x=\frac{4}{-4}
Bây giờ, giải phương trình x=\frac{1±3}{-4} khi ± là số dương. Cộng 1 vào 3.
x=-1
Chia 4 cho -4.
x=-\frac{2}{-4}
Bây giờ, giải phương trình x=\frac{1±3}{-4} khi ± là số âm. Trừ 3 khỏi 1.
x=\frac{1}{2}
Rút gọn phân số \frac{-2}{-4} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x=-1 x=\frac{1}{2}
Hiện phương trình đã được giải.
-2x^{2}-x+1=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
-2x^{2}-x+1-1=-1
Trừ 1 khỏi cả hai vế của phương trình.
-2x^{2}-x=-1
Trừ 1 cho chính nó ta có 0.
\frac{-2x^{2}-x}{-2}=-\frac{1}{-2}
Chia cả hai vế cho -2.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{1}{-2}
Việc chia cho -2 sẽ làm mất phép nhân với -2.
x^{2}+\frac{1}{2}x=-\frac{1}{-2}
Chia -1 cho -2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Chia -1 cho -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Chia \frac{1}{2}, hệ số của số hạng x, cho 2 để có kết quả \frac{1}{4}. Sau đó, cộng bình phương của \frac{1}{4} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Bình phương \frac{1}{4} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Cộng \frac{1}{2} với \frac{1}{16} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Phân tích x^{2}+\frac{1}{2}x+\frac{1}{16} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Rút gọn.
x=\frac{1}{2} x=-1
Trừ \frac{1}{4} khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}