Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}-3x+2+x-2=25
Sử dụng tính chất phân phối để nhân x-1 với x-2 và kết hợp các số hạng tương đương.
x^{2}-2x+2-2=25
Kết hợp -3x và x để có được -2x.
x^{2}-2x=25
Lấy 2 trừ 2 để có được 0.
x^{2}-2x-25=0
Trừ 25 khỏi cả hai vế.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-25\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -2 vào b và -25 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-25\right)}}{2}
Bình phương -2.
x=\frac{-\left(-2\right)±\sqrt{4+100}}{2}
Nhân -4 với -25.
x=\frac{-\left(-2\right)±\sqrt{104}}{2}
Cộng 4 vào 100.
x=\frac{-\left(-2\right)±2\sqrt{26}}{2}
Lấy căn bậc hai của 104.
x=\frac{2±2\sqrt{26}}{2}
Số đối của số -2 là 2.
x=\frac{2\sqrt{26}+2}{2}
Bây giờ, giải phương trình x=\frac{2±2\sqrt{26}}{2} khi ± là số dương. Cộng 2 vào 2\sqrt{26}.
x=\sqrt{26}+1
Chia 2+2\sqrt{26} cho 2.
x=\frac{2-2\sqrt{26}}{2}
Bây giờ, giải phương trình x=\frac{2±2\sqrt{26}}{2} khi ± là số âm. Trừ 2\sqrt{26} khỏi 2.
x=1-\sqrt{26}
Chia 2-2\sqrt{26} cho 2.
x=\sqrt{26}+1 x=1-\sqrt{26}
Hiện phương trình đã được giải.
x^{2}-3x+2+x-2=25
Sử dụng tính chất phân phối để nhân x-1 với x-2 và kết hợp các số hạng tương đương.
x^{2}-2x+2-2=25
Kết hợp -3x và x để có được -2x.
x^{2}-2x=25
Lấy 2 trừ 2 để có được 0.
x^{2}-2x+1=25+1
Chia -2, hệ số của số hạng x, cho 2 để có kết quả -1. Sau đó, cộng bình phương của -1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-2x+1=26
Cộng 25 vào 1.
\left(x-1\right)^{2}=26
Phân tích x^{2}-2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{26}
Lấy căn bậc hai của cả hai vế của phương trình.
x-1=\sqrt{26} x-1=-\sqrt{26}
Rút gọn.
x=\sqrt{26}+1 x=1-\sqrt{26}
Cộng 1 vào cả hai vế của phương trình.