Tính giá trị
\frac{37}{5}=7,4
Phân tích thành thừa số
\frac{37}{5} = 7\frac{2}{5} = 7,4
Chia sẻ
Đã sao chép vào bảng tạm
\frac{3+3+6+7+8+9+10+11+12+13+14+15}{15}
Cộng 1 với 2 để có được 3.
\frac{6+6+7+8+9+10+11+12+13+14+15}{15}
Cộng 3 với 3 để có được 6.
\frac{12+7+8+9+10+11+12+13+14+15}{15}
Cộng 6 với 6 để có được 12.
\frac{19+8+9+10+11+12+13+14+15}{15}
Cộng 12 với 7 để có được 19.
\frac{27+9+10+11+12+13+14+15}{15}
Cộng 19 với 8 để có được 27.
\frac{36+10+11+12+13+14+15}{15}
Cộng 27 với 9 để có được 36.
\frac{46+11+12+13+14+15}{15}
Cộng 36 với 10 để có được 46.
\frac{57+12+13+14+15}{15}
Cộng 46 với 11 để có được 57.
\frac{69+13+14+15}{15}
Cộng 57 với 12 để có được 69.
\frac{82+14+15}{15}
Cộng 69 với 13 để có được 82.
\frac{96+15}{15}
Cộng 82 với 14 để có được 96.
\frac{111}{15}
Cộng 96 với 15 để có được 111.
\frac{37}{5}
Rút gọn phân số \frac{111}{15} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 3.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}