Tìm x
x=2
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{3}-6x^{2}+12x-8=0\times 125
Sử dụng định lý nhị thức \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} để bung rộng \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8=0
Nhân 0 với 125 để có được 0.
±8,±4,±2,±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -8 chia hết cho p và hệ số của số hạng cao nhất 1 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=2
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
x^{2}-4x+4=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia x^{3}-6x^{2}+12x-8 cho x-2 ta có x^{2}-4x+4. Giải phương trình khi kết quả bằng 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 4}}{2}
Có thể giải mọi phương trình của biểu mẫu ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Thay 1 cho a, -4 cho b và 4 cho c trong công thức bậc hai.
x=\frac{4±0}{2}
Thực hiện phép tính.
x=2
Nghiệm là như nhau.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}